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Abstract. In this paper, we consider Fisher vector in the context of
domain adaptation, which has rarely been discussed by the existing
domain adaptation methods. Particularly, in many real scenarios, the dis-
tributions of Fisher vectors of the training samples (i.e., source domain)
and test samples (i.e., target domain) are considerably different, which
may degrade the classification performance on the target domain by using
the classifiers/regressors learnt based on the training samples from the
source domain. To address the domain shift issue, we propose a Domain
Adaptive Fisher Vector (DAFV) method, which learns a transformation
matrix to select the domain invariant components of Fisher vectors and
simultaneously solves a regression problem for visual recognition tasks
based on the transformed features. Specifically, we employ a group lasso
based regularizer on the transformation matrix to select the components
of Fisher vectors, and use a regularizer based on the Maximum Mean Dis-
crepancy (MMD) criterion to reduce the data distribution mismatch of
transformed features between the source domain and the target domain.
Comprehensive experiments demonstrate the effectiveness of our DAFV
method on two benchmark datasets.

Keywords: Domain adaptation · Fisher vector

1 Introduction

Constructing global feature representations based on local descriptors of
images/videos is a common approach in a multitude of visual recognition tasks.
As a commonly used encoding method, Fisher vector [1] encodes both first and
second order statistical information of local descriptors w.r.t. the generative
model (e.g., Gaussian Mixture Model (GMM)) trained based on them, and one
Gaussian model in the GMM corresponds to one component in the extracted
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Fisher vector. Recently, Fisher vector achieves excellent performance for object
recognition [2–5] or human action recognition [6,7]. To extract Fisher vector, we
generally train a GMM based on the local descriptors of training samples and
extract Fisher vectors for both training and test samples based on the pre-trained
GMM. However, the GMM trained on the training samples does not consider
the data distribution of test samples properly and thus lacks the generalization
ability [8] on the test samples, leading to unsatisfactory recognition performance
on the test datasets.

According to the terminology in the field of domain adaptation, the training
dataset and the test dataset are referred to as the source domain and the target
domain, respectively. When the target domain data are available in the training
stage, we can train GMMs based on the mixture of local descriptors from both
source domain and target domain. However, even in this case, the generated
Fisher vectors of source domain samples and target domain samples may be still
considerably different in terms of statistical properties, which is referred to as
dataset bias [9]. Instead of training GMMs based on the data from both domains,
another approach is to adapt the GMM trained based on the source domain to
the target domain [8], or interpolate two GMMs which are trained based on the
source domain and the target domain separately [10]. However, these methods
did not explicitly consider the domain distribution mismatch between the source
domain and the target domain. So they cannot guarantee the extracted Fisher
vectors based on the adapted or interpolated GMMs are domain invariant.

In recent works, many domain adaptation approaches [11–20] have been pro-
posed to tackle the domain shift issue between the source domain and the target
domain (see Sect. 2 for details). However, none of them is specifically designed
for Fisher Vector, since they did not take the generative models (i.e., GMMs)
into consideration. Therefore, the excellent performance of Fisher vector for
visual recognition [5,7] and the lack of effective domain adaptation methods
for Fisher vector motivate our work. By noticing that each Gaussian model in
the GMM characterizes the data distribution of a cluster of local descriptors,
and some Gaussian models are more likely to capture the common data dis-
tribution between the source domain and the target domain, we come out the
idea of identifying the common Gaussian models via selecting the corresponding
components of Fisher vectors that are more likely to be domain invariant.

Let us take the object recognition and human action recognition tasks as two
examples to provide more explanations for domain invariant components. For
object recognition, the appearance of images within the same category may be
quite different between the source domain and the target domain, which is usu-
ally referred to as intra-class difference, while some specific object regions within
the category may be relatively consistent. Considering extracting the CNN fea-
tures of object proposals as local descriptors and encoding them into Fisher
vectors based on the pre-trained GMM, we expect to select the components of
Fisher vectors corresponding to the Gaussian models from the object propos-
als which are more consistent across the source domain and the target domain.
To validate this point, we present a detailed showcase associated with more
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discussions in Sect. 5.1. For human action recognition, sometimes the videos in
the source domain are captured from the front view while the videos in the tar-
get domain are captured from the back view. When using the popular Improved
Dense Trajectory (IDT) features as local descriptors in videos, each trajectory
represents a local movement of human body, some of which can be observed from
both front view and back view while the others can only be observed from one
view. After encoding the IDT descriptors in videos into Fisher vectors based on
the pre-trained GMM, we want to select the components of Fisher vectors cor-
responding to the Gaussian models from the trajectories which can be observed
from both views.

To this end, we propose our Domain Adaptive Fisher Vector (DAFV) method.
Specifically, we learn a transformation matrix to project the Fisher vectors into
a lower dimensional latent subspace and consider visual recognition task as a
regression problem based on the transformed features. A group lasso based reg-
ularizer [21] is employed on the transformation matrix to enforce the components
of the transformation matrix corresponding to the selected (resp., unselected)
components of Fisher vectors to be associated with large (resp., small) weights.
At the same time, we apply the criterion of minimizing the Maximum Mean Dis-
crepancy (MMD) of the transformed features between the source domain and
the target domain by using an MMD-based regularizer. In Sect. 3, we briefly
provide the background knowledge of Fisher vector. In Sect. 4, we introduce our
Domain Adaptive Fisher Vector (DAFV) method in detail and also present a
novel solution to the nontrivial optimization problem. In Sect. 5, we conduct
extensive experiments on two benchmark datasets Bing-Caltech256 and ACT42

to demonstrate the effectiveness of our proposed method.
Our major contributions can be summarized as follows: (1) to the best of

our knowledge, domain adaptation method designed for Fisher vectors has been
rarely discussed in the previous literature. This is the first work to select domain
invariant components of Fisher vectors to reduce the domain distribution mis-
match between the source domain and the target domain; (2) we propose a
Domain Adaptive Fisher Vector (DAFV) method and develop an effective solu-
tion to the proposed formulation; (3) extensive experiments on two benchmark
datasets show the effectiveness of our method for selecting domain invariant
components.

2 Related Work

Our work is related to using Fisher vector for visual recognition tasks. Fisher vec-
tor was first used for image classification in [22] and further improved in [2] with
power normalization and L2 normalization. In [3], Simonyan et al. developed
a two-layer deep network based on Fisher vector for large-scale image classifi-
cation. More recently, with the breakthrough in image representation by using
Convolutional Neural Networks (CNN), CNN features of local regions have been
used as local descriptors for Fisher vector [4,5,23,24]. Fisher vector was also
applied to video action and event recognition [6,25]. Similar to the idea in [3]
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for image classification, Peng et al. proposed stacked Fisher vectors for human
action recognition in [7]. All these methods assume the training samples and test
samples are with the same data distribution while this assumption does not hold
in domain adaptation scenarios.

Our work is related to domain adaptation. The existing domain
adaptation methods can be classified into feature-based methods [13–18,26–28],
SVM-based methods [12,29–32], instance-reweighting methods [11], dictionary
learning methods [19], and low-rank based methods [20,33]. All the above meth-
ods are not specifically designed for Fisher vector. Among them, our method is
more related to [16] and [17] which also learn a transformation matrix. However,
[16,17] are only feature learning methods without considering the property of
Fisher vector while our method can select the domain invariant components of
Fisher vectors and simultaneously learn the regression matrix.

Finally, our work is also related to adapted or interpolated GMMs. Recently,
Bayesian model adaptation has attracted much attention and several approaches
have been proposed to adapt the background GMM to each image [34] or each
category with very few examples [35]. Then, a more general formulation of
Bayesian adaptation was proposed in [8] for image classification. Note that these
methods [8,34,35] focus on adapting the background GMM to either a new image
or a new category instead of considering the difference between two domains.
So the motivation of their methods is intrinsically different from ours. More
recently, Kim et al. proposed to interpolate a set of GMMs on the manifold
in [10], which can be used to learn the interpolation between two GMMs from
two domains. Nevertheless, all the above works did not explicitly address the
domain shift issue. In contrast, our method explicitly reduces the domain distri-
bution mismatch between two domains. Moreover, the Fisher vectors based on
the GMMs learnt by their methods can be readily used to replace the original
Fisher vectors in our method to further improve the performance.

3 Fisher Vector

In the remainder of this paper, we denote a matrix/vector by using a upper-
case/lowercase letter in boldface (e.g., A denotes a matrix and a denotes a
vector). We denote an n-dim column vector of all zeros and all ones by using
0n,1n ∈ R

n, respectively. Note that when the dimension is obvious, we use 0
and 1 instead of 0n and 1n for simplicity. We use I to denote identify matrix.
The superscript ′ is used to denote the transpose of a matrix or a vector. More-
over, we use A−1 to denote the inverse matrix of A and A ◦ B to denote the
element-wise product between two matrices A and B.

Fisher vector is a commonly used encoding method to construct global fea-
ture representations from local descriptors. As a combination of generative and
discriminative approaches, on one hand, the generation procedure of a set of
local descriptors X = {xi|Ni=1} (N is the number of local descriptors) is assumed
to obey a probability density function p(X;θ) with parameters θ. On the other
hand, the gradients of the log-likelihood w.r.t. the model parameters, which
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describe the contribution of model parameters to the generation procedure of
X [1], can be used as input features for discriminative methods such as clas-
sifiers and regressors. Since each image/video can be treated as a set of local
descriptors {xi|Ni=1}, its Fisher vector can be represented as,

GX
θ =

1
N

N∑

i=1

∇θ log p(xi;θ). (1)

For visual recognition tasks, the probability density function p(X;θ) is
usually modeled by Gaussian Mixture Model (GMM) [22,25]. Suppose K is
the number of Gaussian models in the GMM, we use model parameters θ =
{π1,μ1,σ1; . . . ; πK ,μK ,σK} to denote the mixture weights, means, and diago-
nal covariances of GMM, respectively. Based on the definition of Fisher vector
(1), the gradients of the log-likelihood w.r.t. the model parameters (i.e., means
and diagonal covariances) of the k-th Gaussian model can be written as (refer
to [22] for the derivation details),

GX
μ,k =

1
N

√
πk

N∑

i=1

γi(k)(
xi − μk

σk
), (2)

GX
σ,k =

1
N

√
2πk

N∑

i=1

γi(k)[
(xi − μk)2

σ2
k

− 1], (3)

where γi(k) is the probability that the i-th local descriptor xi belongs to the
k-th Gaussian model, which is defined as,

γi(k) =
πkN (xi;μk,σk)∑K
j=1 πjN (xi;μj ,σj)

, (4)

in which N (xi;μk,σk) is the probability of xi based on the Gaussian distribution
of the k-th Gaussian model. Assuming that the dimension of local descriptors is
d, then the dimension of the k-th component of Fisher vectors corresponding to
the k-th Gaussian model is 2d by concatenating (2) and (3). So the final Fisher
vector is a 2Kd-dim vector w.r.t. a K-component GMM.

4 Domain Adaptive Fisher Vector

In this section, we introduce our Domain Adaptive Fisher Vector (DAFV)
method, in which we select the domain invariant components of Fisher vec-
tors by simultaneously learning a transformation matrix and a regression matrix
for visual recognition tasks. In order to make the proposed formulation easier to
be optimized, we introduce an intermediate variable and relax our formulation,
and then develop an effective algorithm to solve the optimization problem.
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4.1 Formulation

Suppose we have ns source domain samples and nt target domain samples from
C categories. Each sample is represented by a 2Kd-dim Fisher vector, in which
d is the dimension of local descriptors and K is the number of Gaussian models
in the GMM. Let us denote Xs ∈ R2Kd×ns and Xt ∈ R2Kd×nt as the features
of source domain samples and target domain samples, and Y ∈ ZC×ns as the
binary label matrix for the source domain samples. In order to select domain
invariant components and simultaneously keep discriminative information, we
use the transformation matrix R ∈ Rm×2Kd to project the original Fisher vec-
tor to lower dimensional subspace with m being the dimension of transformed
features. We employ the group lasso based regularizer [21] ‖R̃‖2,1 to enforce
each column of R̃ to have either all zero weights or multiple nonzero weights,
in which R̃ ∈ R2d×Km is a reshaped matrix of R by setting each group of 2d
entries in each row of R corresponding to one component in the Fisher vector
as one column in R̃. To be exact, we expect to assign nonzero weights to the
selected domain invariant components of Fisher vectors and zero weights to the
remaining ones.

To ensure the selected components are domain invariant, we tend to mini-
mize the Maximum Mean Discrepancy (MMD) of transformed features between
the source domain and the target domain by using an MMD-based [11] regular-
izer ‖ 1

ns
RXs1 − 1

nt
RXt1‖2, in which 1

ns
RXs1 (resp., 1

nt
RXt1) is the mean of

transformed features from the source (resp., target) domain, so that the data dis-
tribution mismatch between two domains can be reduced. Additionally, inspired
by [17], we add a constraint RXHX′R′ = I to maximally preserve the data
variance, where X = [Xs,Xt] and H = In − 1

n11
′ with n = ns + nt.

By denoting W ∈ RC×m as the regression matrix, we formulate our method
by solving the following regression problem:

min
W,R

1
2
‖WRXs − Y‖2F +

γ

2
‖W‖2F + λ‖R̃‖2,1

+
1
2
‖ 1
ns

RXs1 − 1
nt

RXt1‖2 (5)

s.t. RXHX′R′ = I, (6)

in which ‖WRXs − Y‖2F is the regression error, ‖W‖2F is the weight decay
regularizer to control the complexity of W, γ and λ are two trade-off parameters.

The problem in (5) is not easy to solve due to the constraint in (6). For
ease of optimization, we introduce an intermediate variable S and promote the
coherence between R and S by adding a coherent regularizer ‖RS′‖2F [36]. With
larger ‖RS′‖2F , R is more coherent to S. As a result, the proposed formulation
after introducing S becomes,
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min
W,R,S

1
2
‖WSXs − Y‖2F +

γ

2
‖W‖2F + λ‖S̃‖2,1

+
1
2
‖ 1
ns

RXs1 − 1
nt

RXt1‖2 − 1
2
‖RS′‖2F (7)

s.t. RXHX′R′ = I. (8)

By replacing R in ‖WRXs − Y‖2F and ‖R̃‖2,1 in (5) by S, the subproblem
w.r.t. R in (7) can be easily solved by using eigen decomposition, which will be
discussed in detail in the next section.

Another problem is that the dimension of Fisher vector is usually very high.
Considering high time-complexity operations such as eigen decomposition, the
algorithm will become very time-consuming. To accelerate the algorithm and
simultaneously capture the semantic information within each category, we parti-
tion each Fisher vector into C uncorrelated parts by training a category-specific
GMM with a smaller number of Gaussian models based on the training samples
within each category. Then, a set of Wc, Rc, and Sc is learnt for the com-
ponents of each Fisher vector corresponding to the c-th GMM. As a result,
we have totally C sets of Wc ∈ RC×m̄, Rc ∈ Rm̄×2K̄d, and Sc ∈ Rm̄×2K̄d

for c = 1, . . . , C, in which we denote the number of Gaussian models in each
category-specific GMM as K̄ (K̄ << K) and the dimension of the transformed
features corresponding to each category-specific GMM as m̄ (m̄ << m). Corre-
spondingly, we partition the training (resp., test) features Xs (resp., Xt) into
Xs

c ∈ R2K̄d×ns ’s (resp., Xt
c ∈ R2K̄d×nt ’s) with each obtained based on the c-th

GMM, and denote Xc = [Xs
c,X

t
c]. In fact, supervised learning for GMM (i.e.,

train one GMM per category) has been studied in [37] and proved to be able
to preserve the useful discriminative information. To this end, we can relax the
problem in (7) as,

min
Wc,Rc,Sc

1
2
‖

C∑

c=1

WcScXs
c − Y‖2F +

γ

2

C∑

c=1

‖Wc‖2F + λ

C∑

c=1

‖S̃c‖2,1

+
1
2

C∑

c=1

‖ 1
ns

RcXs
c1 − 1

nt
RcXt

c1‖2 − 1
2

C∑

c=1

‖RcS′
c‖2F (9)

s.t. RcXcHX′
cR

′
c = I, ∀c. (10)

By partitioning a Fisher vector into C uncorrelated parts, we can solve C
small-scale subproblems instead of a large-scale problem, which is more efficient.
Considering the tradeoff between efficiency and effectiveness, we set K̄ as 8 and
m̄ as 1000 in our experiments. Moreover, another benefit of replacing ‖S̃‖2,1 with
‖S̃c‖2,1 is that we can guarantee at least one Gaussian model is selected from
each category-specific GMM, which ensures capturing the semantic information
over all categories. Next, we will discuss how to solve the problem in (9).
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4.2 Optimization

We solve the problem in (9) by using an alternative optimization approach.
Specifically, we alteratively update three sets of variables Wc’s, Sc’s, and Rc’s
until the objective value of (9) converges.

Update Wc when fixing Rc and Sc: When fixing Rc’s and Sc’s, the problem
in (9) reduces to:

min
Wc

1
2
‖

C∑

c=1

WcScXs
c − Y‖2F +

γ

2

C∑

c=1

‖Wc‖2F (11)

By setting the derivative of (11) w.r.t. each Wc to 0, we can derive the close-form
solution for each Wc as,

Wc = (Y −
C∑

c̃=1,c̃�=c

Wc̃Sc̃Xs
c̃)X

s
c
′S′

c(ScXs
cX

s
c
′S′

c + γI)−1. (12)

We calculate each Wc when fixing all the other Wc̃ for c̃ �= c and repeat this
process iteratively until the objective value of (11) converges.

Update Rc when fixing Wc and Sc: When fixing Wc’s and Sc’s, the problem
in (9) can be separated into C independent subproblems with one for each Rc.
For ease of optimization, we rewrite the subproblem w.r.t. each Rc by using
trace norm as follows,

min
Rc

1
2
tr(RcXcLX′

cR
′
c) − 1

2
tr(RcS′

cScR′
c) (13)

s.t. RcXcHX′
cR

′
c = I, (14)

where L is an indicator matrix, in which Lij = 1
n2
s

if i ≤ ns and j ≤ ns; else
Lij = 1

n2
t

if i > ns and j > ns; otherwise, Lij = − 1
nsnt

.
By introducing a symmetric matrix Zc containing the Lagrangian multipliers

for the constraints in (14), we obtain the Lagrangian form of (13) as,

LRc,Zc
= tr(Rc(

1
2
XcLX′

c − 1
2
S′
cSc)R′

c) − tr((RcXcHX′
cR

′
c − I)Zc). (15)

By setting the derivative of (15) w.r.t. Rc to 0, we arrive at

Rc(XcLX′
c − S′

cSc) = 2ZcRcXcHX′
c. (16)

Multiplying both sides on the right by R′
c, we obtain the solution w.r.t. Zc as

follows,

Zc =
1
2
(Rc(XcLX′

c − S′
cSc)R′

c)(RcXcHX′
cR

′
c)

−1. (17)
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By substituting (17) back into (15) followed by some simplifications, we derive
the dual form of (13) as,

max
Rc

1
2
tr((RcXcHX′

cR
′
c)

−1(Rc(XcLX′
c − S′

cSc)R′
c)) (18)

Similar to kernel Fisher discriminant analysis [38], the problem in (18) can be
solved by eigen decomposition and the rows of Rc are the m̄ leading eigen vec-
tors of (XcHX′

c)
−1(XcLX′

c − S′
cSc).

Update Sc when fixing Rc and Wc: When fixing Rc’s and Wc’s, the problem
in (9) reduces to the following problem:

min
Sc

1
2
‖

C∑

c=1

WcScXs
c − Y‖2F + λ

C∑

c=1

‖S̃c‖2,1 − 1
2

C∑

c=1

‖RcS′
c‖2F (19)

The optimization problem in (19) is non-convex and thus only local opti-
mum can be reached by using gradient descent algorithm. First, we derive the
derivative of each term in (19) w.r.t. each Sc separately.

J1 =
∂ 1

2‖∑C
c=1 WcScXs

c − Y‖2F
∂Sc

= W′
c(

C∑

c=1

WcScXs
c − Y)Xs

c
′, (20)

J2 =
∂λ‖S̃c‖2,1

∂Sc
= λSc ◦ Dc, (21)

where Dc ∈ Rm̄×2K̄d is a matrix, in which each entry Dij
c is set as 1

‖Sik
c ‖2

if j

belongs to the k-th component, with Si,k
c denoting the k-th component in the

i-th row of Sc.

J3 =
∂ − 1

2‖RcS′
c‖2F

∂Sc
= −ScR′

cRc. (22)

In each iteration, we update each Sc when fixing all the other Sc̃’s for c̃ �= c
by using the following equation:

Sc ← Sc − η(J1 + J2 + J3), (23)

where η is the learning rate, which is empirically fixed as 0.0001 in our experi-
ments. We repeat this process iteratively until the objective value of (19) con-
verges. The whole algorithm is summarized in Algorithm 1. The objective value
of (9) monotonically decreases as the number of iterations increases and usually
converges within 20 iterations in our experiments.

In the testing stage, for each test sample xt which contains the features xt
c’s

obtained based on each category-specific GMM, we use
∑C

c=1 WcScxt
c to obtain

the regression values and assign this test sample to the category corresponding
to the maximum regression value.
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Algorithm 1. Domain Adaptive Fisher Vector (DAFV) Algorithm
1: Input: Xs

c,X
t
c,Y, λ, γ

2: Initialize Sc as the PCA projection matrix on Xc.
3: repeat
4: repeat
5: For c=1,. . . ,C, update Wc using (12).
6: until The objective of (11) converges.
7: For c=1,. . . ,C, update Rc by solving (18).
8: repeat
9: For c=1,. . . ,C, update Sc using (23).

10: until The objective of (19) converges.
11: until The objective of (9) converges.
12: Output: Wc, Sc.

5 Experiments

In this section, we demonstrate the effectiveness of our Domain Adaptive Fisher
Vector (DAFV) approach for object recognition and human action recognition
by conducting extensive experiments on two benchmark datasets.

5.1 Object Recognition

Experimental Settings: We use Bing-Caltech256 [39] dataset, which is com-
monly used to evaluate domain adaption methods for object recognition. Bing-
Caltech256 dataset consists of the images from Caltech256 dataset and the
images from Bing search engine distributed in 256 categories. Generally, Bing is
treated as the source domain and Caltech-256 is treated as the target domain,
because Bing images are collected by the search engine without having ground-
truth labels and thus not appropriate for being used as test set. Following the
setting in [40], we use the first 20 categories and set the number of source (resp.,
target) domain examples per category to be 50 (resp., 25) based on the train/test
split provided in [39].

In order to generate local descriptors for each image, we first use selection
search [41] to generate object proposals. Then, we use the output of the 6-th layer
of AlexNet [42] as the 4096-dim feature for each proposal with the pretrained
model in [43]. After reducing the dimension of proposal features to 200 by using
Principle Component Analysis (PCA), we use the proposals from the source
domain within each category to train an 8-component Gaussian Mixture Model
(GMM), which leads to a total of 160 components for all categories. Finally, we
encode each image, which is a bag of 200-dim proposal features, as a 64, 000-dim
Fisher vector based on the trained GMMs.
Baselines: We compare our DAFV method with two sets of baselines: domain
adaptation baselines and GMM based baselines. We also include Regularized
Least Square (RLS) as a baseline. For domain adaptation baselines, we compare
our method with feature-based methods GFK [13], SGF [14], SA [15], DIP [16],
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TCA [17], LSSA [18], CORAL [28], the SVM-based method DASVM [29],
the instance reweighting method KMM [11], the dictionary learning method
SDDL [19], and the low-rank based method LTSL [20]. Note that for feature-
based methods [13–18], we first obtain the transformed features by employing
their methods suggested in the original papers [13–18] and then use the trans-
formed features as input features for RLS.

For GMM based baselines AGMM [8] and EM RGMM [10], we use different
approaches to obtain GMMs, which is explained as follows,

– AGMM [8]: We first train a 160-component GMM by using proposals from
the source domain, and then adapt this GMM using the proposals from the
target domain. Based on the GMM on the source domain and the adapted
GMM, we extract two sets of Fisher vectors for all images from both domains.
Based on these two sets of Fisher vectors, we train regressors and obtain the
regression values of test images separately, and finally use the average fusion
of two sets of regression values for prediction.

– EM RGMM [10]: We train two 160-component GMMs based on the proposals
from the source domain and the target domain, separately. Then, we calculate
the interpolated GMM between the two GMMs. Based on the interpolated
GMM, we extract Fisher vectors for all images from both domains. Finally,
we train regressors and predict the test images based on the extracted Fisher
vectors.

Table 1. Accuracies (%) of RLS and GMM based baselines, as well as our DAFV
method and its two special cases for object recognition. The best result is denoted in
boldface

RLS AGMM EM RGMM DAFV sim1 DAFV sim2 DAFV

73.2 76.8 77.4 75.4 77.8 79.4

Table 2. Accuracies (%) of domain adaptation baselines and our DAFV method for
object recognition. The best result is denoted in boldface

KMM DASVM GFK SGF SA DIP TCA LSSA SDDL LTSL CORAL DAFV

73.6 75.8 73.6 74.4 74.2 71.8 74.8 77.8 62.4 77.6 75.20 79.4

Moreover, in order to validate our MMD-based regularizer and group lasso
based regularizer, we compare our method with its two simplified versions.
Specifically, we remove the group lasso based regularizer

∑C
c=1 ‖S̃c‖2,1 in (9) by

setting the parameter λ as 0 and refer to this special case as DAFV sim2. Based
on DAFV sim2, we further remove the MMD-based regularizer ‖ 1

ns
RcXs

c1 −
1
nt
RcXt

c1‖2 and denote this special case as DAFV sim1.
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We use accuracy for performance evaluation. Two trade-off parameters γ
and λ in (9) are empirically set as 1000 and 10 for our DAFV method. For the
baseline methods, we choose their optimal parameters based on their accuracies
on the test dataset.

Experimental Results: We report the results of RLS, the GMM based base-
lines, and our DAFV method including its two special cases in Table 1, from
which we observe that AGMM and EM RGMM achieve better results than RLS,
suggesting the benefits of adapting or interpolating GMMs. We also observe
that our DAFV method outperforms DAFV sim2, which validates the effective-
ness of selecting some components of Fisher vectors by using group lasso based
regularizer. Additionally, DAFV sim2 outperforms DAFV sim1, which validates
our MMD based regularizer. Finally, our DAFV method outperforms the GMM
based baselines, which shows its effectiveness on reducing domain distribution
mismatch between the source domain and the target domain.

Moreover, we report the results of domain adaptation baselines in Table 2
and also include the result of our DAFV method for comparison. From Table 2,
we observe that the domain adaptation baselines are generally better than RLS
reported in Table 1. The results validate the effectiveness of employing different
strategies to address the domain shift issue. However, all the domain adaptation
baselines are worse than our DAFV method. One possible explanation is that
we select the domain invariant components of Fisher vectors, which is designed
for Fisher vectors.

Fig. 1. The top object proposals belonging to the selected Gaussian model for the
“beer-mug” category from the Bing dataset

Discussion on Domain Invariant Components: As discussed in Sect. 1, the
motivation of our DAFV method is that each Gaussian model in the GMM
represents the data distribution of a cluster of local descriptors and corresponds
to one component in the encoded Fisher vector. Assuming that there exist some
Gaussian models representing common distribution shared by both source and
target domain, the corresponding components of Fisher vectors should be more
domain invariant. The benefit of selecting domain invariant components has been
demonstrated in Tables 1 and 2, and now we provide some intuitive examples to
illustrate the domain invariant components.

First, recall that we train C category-specific GMMs and Sc ∈ Rm̄×2K̄d is the
transformation matrix corresponding to the c-th GMM. For the c-th category, we
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compute the L2 norm for each component in each row of Sc, which corresponds
to one Gaussian model in the c-th GMM. Then, we sum the computed values
over different rows and choose the component with the maximum value, which
corresponds to the selected Gaussian model in the c-th GMM. Because there are
probabilities γi(k)’s that the i-th proposal belongs to the k-th Gaussian model
(see Sect. 3) when training a GMM, we can easily pick out the top proposals that
belong to the cluster corresponding to the selected Gaussian model. Let us take
the “beer-mug” category as an example to show the top proposals for the selected
Gaussian model in Fig. 1, from which we have an interesting observation that
the proposals are all near the handle of beer mug. We conjecture beer mugs from
different domains are quite different in shape, color, and pattern of body regions,
but the handle regions generally look similar as illustrated in Fig. 1. Intuitively,
the handle regions can be used to discriminate beer mugs against the other
categories but are less variant across different domains. So the components of
Fisher vectors corresponding to the selected Gaussian models are assigned larger
weights, which is helpful for improving the performance of object recognition.

5.2 Human Action Recognition

Experimental Settings: We use the ACT42 [44] dataset for human action
recognition. The ACT42 dataset contains videos from 14 categories of human
actions, which are captured from 4 camera viewpoints. Following [44], we use a
subset with 2648 RGB videos from all 4 viewpoints. We treat one view as the

Table 3. Accuracies (%) of RLS and GMM based baselines, as well as our DAFV
method and its two special cases for human action recognition. The best results on
each setting are denoted in boldface

Setting RLS AGMM EM RGMM DAFV sim1 DAFV sim2 DAFV

1->2 69.94 72.36 73.72 71.00 72.96 74.92

1->3 44.11 46.07 46.22 45.02 46.68 48.49

1->4 77.64 80.21 80.06 81.27 82.33 83.99

2->1 74.17 77.95 74.02 77.04 77.64 79.61

2->3 67.37 67.52 67.82 69.94 71.00 72.96

2->4 60.88 61.03 61.18 60.57 62.24 63.90

3->1 52.87 47.89 51.96 51.21 52.87 55.74

3->2 66.92 66.92 67.07 69.18 69.94 71.90

3->4 40.03 41.69 41.99 41.69 43.20 45.47

4->1 71.75 73.72 72.21 68.73 75.98 76.13

4->2 46.37 52.27 52.11 49.40 51.96 53.92

4->3 37.31 38.97 36.71 38.52 40.03 41.69

Avg 59.11 60.55 60.42 60.30 62.24 64.06
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Table 4. Accuracies (%) of domain adaptation baselines and our DAFV method for
human action recognition. The best results on each setting are denoted in boldface

Setting KMM DASVM GFK SGF SA DIP TCA LSSA SDDL LTSL CORAL DAFV

1->2 67.67 59.52 73.11 66.16 72.96 72.21 72.81 73.56 72.96 71.75 72.69 74.92

1->3 45.62 35.65 46.37 45.02 45.92 46.37 46.53 44.11 45.02 45.17 46.37 48.49

1->4 79.91 74.17 81.72 78.85 80.97 80.51 82.93 82.33 79.00 81.72 81.72 83.99

2->1 76.74 68.88 77.95 70.85 75.98 75.38 79.76 68.88 75.98 75.68 75.68 79.61

2->3 69.94 55.29 70.54 66.62 69.79 71.60 69.49 65.41 69.94 68.73 71.90 72.96

2->4 61.33 56.34 61.48 59.06 62.08 62.84 61.78 62.08 61.33 61.33 61.63 63.90

3->1 54.98 48.94 53.78 47.73 54.08 54.53 54.68 50.45 53.47 54.08 53.47 55.74

3->2 70.54 62.08 69.94 69.79 67.07 71.00 67.67 64.20 68.88 67.82 67.67 71.90

3->4 41.39 32.33 42.60 41.09 42.45 43.20 43.35 40.94 36.40 43.96 43.81 45.47

4->1 74.62 67.98 73.11 74.17 73.87 73.87 73.26 66.01 74.47 72.36 73.72 76.13

4->2 54.83 46.37 49.24 53.02 53.32 51.66 49.85 52.11 47.43 51.66 52.27 53.92

4->3 34.29 36.40 40.03 39.43 38.97 40.33 39.27 39.73 37.61 38.97 40.48 41.69

Avg 60.99 53.66 61.66 59.32 61.46 61.96 61.78 59.15 60.21 61.10 61.81 64.06

source domain and another different view as the target domain, which results
in totally 12 settings.

Following [6], we use the source codes provided in [6] to extract four types
of Improved Dense Trajectory (IDT) descriptors (i.e., 30-dim trajectories, 96-
dim HOG, 108-dim HOF, and 192-dim MBH). Following [6], we first reduce
the dimension of descriptors by a factor of two using PCA. Then, we use the
descriptors from the videos in the source domain within each category to train
an 8-component GMM, which leads to totally 112 components for all categories.
Finally, we encode each video, which is a bag of 213-dim IDT descriptors, as a
47712-dim Fisher vector based on the trained GMMs.

Baselines: We compare our DAFV method with the same baselines as dis-
cussed in Sect. 5.1. The only difference is that we train 112-component GMMs
for AGMM and EM RGMM. For the human action recognition task, accuracy
is still used for performance evaluation. Our DAFV method employs the same
parameters as used for object recognition while optimal parameters of the base-
line methods are chosen according to their accuracies on the test dataset.

Experimental Results: We report the experimental results of RLS and GMM
based baselines, as well as our DAFV method and its two special cases on 12
settings in Table 3. From the results, we can draw similar conclusions as those
for object recognition in Sect. 5.1. In particular, the comparisons among our
DAFV method and its two special cases clearly demonstrate the effectiveness
of our group lasso based regularizer and the MMD-based regularizer. Moreover,
our DAFV method is better than the GMM based baselines on all settings. The
results again demonstrate that the recognition performance can be improved by
reducing domain distribution mismatch.

Table 4 shows the results of domain adaptation baselines. It can be seen that
the average accuracies of the domain adaptation baselines are better than that
of RLS reported in Table 3 except DASVM, which indicates the advantage of
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coping with domain difference by using various methods. While TCA (resp.,
KMM) is better than our DAFV method on the setting 2->1 (resp., 4->2), our
method achieves the best results on 10 out of 12 settings. Moreover, in terms
of the average accuracy over 12 settings, our DAFV method is the best, which
again demonstrates it is helpful to address the domain shift issue by selecting
domain invariant components of Fisher vectors.

6 Conclusion

In this paper, we have proposed a domain adaptation method named Domain
Adaptive Fisher Vector (DAFV), which is designed for Fisher vectors. Based on
the assumption that some Gaussian models in the GMM can better capture the
common data distribution between the source domain and the target domain,
our DAFV method is designed to select the domain invariant components of
Fisher vectors corresponding to the common Gaussian models and simultane-
ously solve a regression problem. The effectiveness of our DAFV method for
visual recognition has been demonstrated by extensive experiments.
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